OBJECTIVES

• Pediatric and adolescent patients are at higher risk for ACL graft re-rupture after surgery than the adult population
• The utilization of allograft tissue in the young, active population has been associated with higher rates of graft failure
• Yet, there has been limited comparison in this population between hamstring (HM) and bone-tendon-bone (BTB) autografts
• The purpose of this study was to compare outcomes, particularly re-tear and re-operation rates, in adolescent patients undergoing BTB vs. HM autografts

METHODS

• A consecutive series of adolescent patients who underwent ACL reconstruction with either BTB or HM autografts was reviewed over a 7 year period
• Patients were excluded if they had allograft only reconstruction or had less than 9 month follow-up
• Age, gender, graft size, concurrent procedures, high-risk sporting activity, post-operative non-compliance, re-tear rate, re-operation rate, and total follow-up were collected

RESULTS

• 271 patients were identified (220 HM, 51 BTB) with a mean follow-up of 2.0 ± 1.1 yrs
• Hamstring patients had a trend towards a younger mean age (HM 15.7 ± 4.1 yrs vs. BTB 16.7 ± 1.3 yrs, p = 0.07)
• Mean hamstring graft size was 8.3 mm ± 0.6 mm, BTB graft always 9 mm
• No significant difference in re-tear rates (HM 8.6% vs. BTB 5.9%, p = 1.00)
• Trend toward high re-operation rate in HM (HM 15.5% vs BTB 7.8%, p = 0.70)
• No significant difference in re-tear rates (HM 8.6% vs. BTB 5.9%, p = 1.00)
• Trend toward high re-operation rate in HM (HM 15.5% vs BTB 7.8%, p = 0.70)
• Additional procedures listed in Table 1

CONCLUSION / DISCUSSION

• No differences were associated between HM and BTB groups in terms of re-tear rates
• A trend towards more re-operation rates was seen in the HM group
• The optimal graft choice for this population should be a shared decision between surgeon and patient
• Further multi-center study is necessary to see if these trends hold true

<table>
<thead>
<tr>
<th></th>
<th>HM</th>
<th>BTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>Reconstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medial Meniscus</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Repair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+D</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cyclops Debridement</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Removal of Hardware</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Manipulation</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Repeat operations in HM vs. BTB groups

Contact Information:
Nirav.Pandya@ucsf.edu, @drniravpandya